Preliminary communication

THE PREPARATION AND UNUSUAL REARRANGEMENT OF TRIPLY BRIDGED μ -HETEROMETHYLENECOBALT COMPLEXES. MOLECULAR STRUCTURE OF μ -ETHOXYCARBONYLMETHYLENEBIS[CARBONYL-(η^{5} -CYCLOPENTADIENYL)COBALT](Co-Co)*

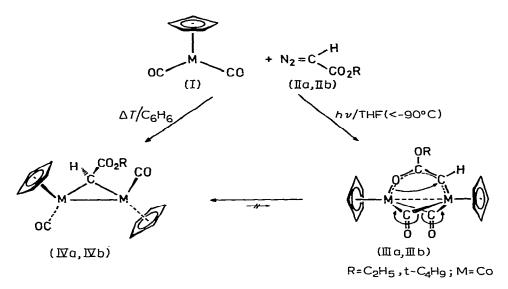
WOLFGANG A. HERRMANN^{*}, ILONA SCHWEIZER,

Chemisches Institut der Universität Regensburg, Universitätsstrasse 31, D-8400 Regensburg 1 (Germany)

MICHAEL CRESWICK and IVAN BERNAL*

Chemistry Department, University of Houston, Houston/Texas 77004 (USA)

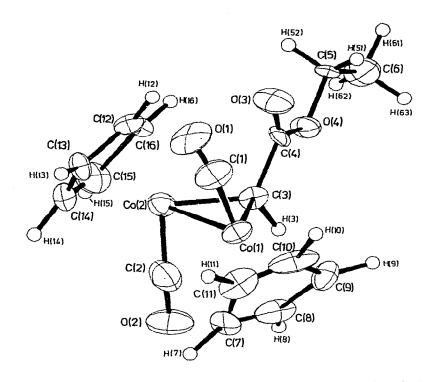
(Received September 29th, 1978)

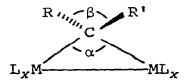

Summary

The μ -heteromethylenecobalt complexes, which have been synthesized by photolysis of $(\eta^5 \cdot C_5 H_5)Co(CO)_2$ in the presence of the corresponding diazoacetates at $< -90^{\circ}C$ in tetrahydrofuran, undergo a novel type of intramolecular irreversible rearrangement yielding two isomers. The structure of one of the isomers has been established by X-ray analysis. A comparison of the structural parameters of all known μ -methylene-transition metal complexes shows that the internal angles α of the cyclopropane-like systems are far less sensitive to the compositions and structures of the molecules than the external angles β . The internal angles cannot be readily correlated with other features of the molecule.

We recently demonstrated that the thermal reactions of dicarbonyl(η^{5} -cyclopentadienyl)cobalt (I) with various dialkyl diazomalonates as well as alkyl diazoacetates (II) provide simple, high-yield syntheses of μ -methylene cobalt derivatives of type IV, which are not accessible by other means [2,3]. Upon photolysis of ethyl diazoacetate (IIa) or t-butyl diazoacetate (IIb), respectively, in the presence of I at < -90°C, however, along with the brown μ -methylene derivatives IVa and IVb we obtained also the green, crystalline compounds IIIa and IIIb**, which have been shown by elemental analysis, mass spectra, IR and

^{*}Transition metal methylene complexes. V, for part IV see ref. 1; also Studies on metal-metal bonds, IV, for part III see ref. 2.


 ^{**}For experimental, spectroscopic and kinetic details see ref. 3. Elemental analyses. IIIa: Found: C. 49.52; H, 4.26; Co, 30.18; N, 0.00; O, 16,58; molecular weight 390 (mass spectr.). C₁₆H₁₆Co₂O₄ calcd.: C, 49.26; H, 4.13; Co, 30.21; N, 0.00; O, 16.41%; molecular weight 390.2. IIIb: Found: C, 51.69; H, 4.82; Co, 28.18; N, 0.00; molecular weight 418 (mass spectr.). C₁₈H₂₀Co₂O₄ calcd.: C, 51.70; H, 4.82; Co, 28.18; N, 0.00%; molecular weight 418.2.


¹H NMR spectra to be isomers of IVa and IVb, respectively. Although the triply bridged low-temperature products IIIa and IIIb are thermally stable in the solid state, they undergo an interesting irreversible rearrangement in solution. The dark-green solutions of IIIa and IIIb in methylene chloride rapidly turn brown at ambient temperature without decomposition. The products formed during these isomerizations are identical with the known [1] μ -methylene complexes IVa and IVb, respectively, which can be isolated pure without further purification. By means of IR and ¹H NMR techniques we characterized both the carbonyl bridge opening and the μ -methylene rearrangement as intramolecular processes. This hitherto unknown type of isomerization (IIIa \rightarrow IVa, IIIb \rightarrow IVb) strictly obeys a first order rate law (e.g. process IIIa \rightarrow IVa at T 290.5 ± 2 K: $k = (3.80 \pm 0.03) \times 10^{-4} \sec^{-1}; \tau_{1/2} = 30.37 \pm 0.24 \text{ min}; \Delta G^{+} =$ 21.54 ± 0.20 kcal degree⁻¹ mol⁻¹; CH₂Cl₂). The reverse of the rearrangements presented here has not been achieved by any means. The identity of the isomerization products has also been proved by an X-ray analysis performed on the ethyl derivative IVa*. Figure 1 shows the molecule, which is characterized by the following structural parameters:

Bond lengths (pm)		Bond angles (°)			
Co(1)Co(2)	249.5(1)	Co(1)C(3)Co(2)	79.6(2)		
Co(1)C(3)	195.1(6)	Co(1)Co(2)C(3)	50,3(2)		
Co(2)C(3)	194.4(7)	Co(2)Co(1)C(3)	50,1(2)		
Av. Co-C(O)	170.8	C(4)C(3)H(4)	92.6(2)		
		Torsional angle (°)	Torsional angle (°)		
		C(1)-Co(1)-Co(2)-C(2)-159.80			

^{*}Enraf Nonius CAD-4 (Mo- K_{α}). Space group: P2₁ with a 729.9(2), b 785.9(2), c 2723.7(4) pm, β 91.74(2)°, Z 4. A total of 3215 reflections were collected of which 2069 had $I > 3\sigma(I)$ and were used in the solution and refinement. R(F) 2.97%, $R_{w}(F)$ 2.60%. For crystallographic details see ref. 5.

It is of interest to note that the Co—Co distance in this molecule has a value which is closer to those found in the compounds described as Class A and Class B of tetra-bonded dinuclear cobalt complexes, than to those in Class C, which are formally three-bonded [6]. Thus, a metal—metal bond and the bridging methylene seem to take the place of the two bridging carbonyl ligands present in the entire set of compounds we listed as Classes A and B in our previous paper [6]. This remarkable observation is not unique to this Co—Co dimer, having been observed (but not discussed) in the case of μ -CH₂[n^5 -C₅H₅)Rh(CO)]₂ [2]. Furthermore, the same result is obtained in the analogous binuclear cobalt complex in which the ethoxycarbonylmethylene bridge of IVa is replaced by 1,3-dioxoindaneylidene(2) [7b]. Finally, for the class of compounds containing bridging methylenes [1,2,7] the internal angle α is much less sensitive than the external angle β to changes in such variables as (a) the pair of metals involved,

(b) the length of the metal—metal bond, and (c) the nature of the substituents R and R' bound to the methylene carbon (see Table 1). Such changes in the internal angle α cannot be readily correlated with (1) changes in the external angle β , (2) the nature of the groups R and R' (i.e. steric effects, such as crowding, are not logically related to variations in α or β), (3) the length of the metal—metal bond, nor (4) obvious features of the metals themselves, such as the number of *d*-electrons.

ML _x	R	R'	Number of bridging ligands	α.	ß	Reference
$(\eta^{5}-CH_{3}C_{5}H_{4})Mn(CO)_{2}$	н	н	1	86.9(2)	92(2)	7a
(n ⁵ -C _s H _s)Rh(CO)	н	н	1	81.7(1)	115.9(4)	2,4
$(\eta^{5}-C_{5}H_{5})Rh^{0}$	C, H,	C, H,	3	75	f	7c
$(\eta^{5}-C_{5}H_{5})Rh^{b}$	C, H,	C, H,	2	≈76 ^g	f	7c
(η ⁵ -C ₃ H ₃)Co(CO)	н	CO ₂ C ₂ H ₅	1	79.6(2)	92.6(2)	this work
(η ⁵ -C ₅ H ₅)Co(CO)	1,3-dioxoindaneylidene(2) OC(=O)CH=CH		1	79.0(1)	104.3(3)	7b
$C_0(CO)$			2	75	108	7d
Ru[P(CH ₃) ₃] ₃ ^d	н	н	3	≈78	f	7e
Re(CO), e	OCH ₁	C, H, CH ₃ -p	2	77(1)	115(3)	7f
Fe(CO) ₃	Carbocy <i>e</i> lic ligand	$C_7 H_8 - \mu$ -alkyl- idene	2	81.4	f	7g

^a[μ -C(C₆H₅)₂]₂- μ -CO[(η^{5} -C₅H₅)Rh]₂. ^b[μ -C(C₆H₅)₂]₂[(η^{5} -C₅H₅)Rh]₂. ^C[μ -C₄H₂O₂]- μ -CO[Co(CO)₃]₂. ^d(μ -CH₂)₃{Ru[P(CH₃)₃]₃]₂. ^e[μ -C(OCH₃)(C₆H₄CH₃-p)]₂[Re(CO)₄]₂. ^fNot given. ^gNo exact figures given.

Acknowledgement

This work has been supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the US National Science Foundation and the Welch Foundation.

References

- 1 W.A. Herrmann, Chem. Ber., 111 (1978) 1077.
- 2 W.A. Herrmann, C. Krüger, R. Goddard and I. Bernal, J. Organometal. Chem., 140 (1977) 73.
- 3 W.A. Herrmann and I. Schweizer, Z. Naturforsch., in preparation.
- 4 W.A. Herrmann, C. Krüger, R. Goddard and I. Bernal, Angew. Chem. Intern. Edit. Engl., 16 (1977) 334.
- 5 I. Bernal et al., Inorg. Chem., in preparation.
- 6 I. Bernal, J.D. Korp, G.M. Reisner and W.A. Herrmann, J. Organometal. Chem., 139 (1977) 321.
- 7 (a) I. Bernal, M. Creswick and W.A. Herrmann, Angew. Chem. Intern. Edit. Engl., in preparation; quoted in: W.A. Herrmann, Angew. Chem. Intern. Edit. Engl., 17 (1978) in press; (b) M. Creswick, I. Bernal, W.A. Herrmann and I. Steffl, Chem. Ber., in press; (c) H. Ueda, Y. Kai, N. Yasuoka and N. Kasai, 21th Symp. Organometal. Chem., Sendai/Japan (Oct. 4-6, 1973), Abstr. p. 214; (d) O.S. Mills and G. Robinson, Inorg. Chim. Acta, 1 (1967) 61; (e) R. Anderson, R.A. Jones, G. Wilkinson, M.B. Hursthouse and K.M. Abdul Malik, J. Chem. Soc. Chem. Commun., (1977) 865; (f) E.O. Fischer, T.L. Lindner, H. Fischer, G. Huttner, P. Friedrich and F.R. Kreissl, Z. Naturforsch. B, 32 (1977) 648; (g) R. Aumann, H. Wormann and C. Krüger, Angew. Chem. Intern. Edit. Engl., 15 (1976) 609.

C20

TABLE 1